Equation Finder and Reminders for Kinematics

The following rules are used with the Equation Finder:

- 1. Identify the "knowns" in the problem.
- 2. Identify the "unknown" in the problem.
- 3. Find an equation that has all knowns and the one desired unknown. (The M –missing indicates which variable is NOT in the equation.)
- 4. Solve the correct equation for the unknown.
- 5. Insert the knowns into the solved equation and calculate value and units of the unknown.

Equation Finder:

Equation	\vec{x}_i	\vec{x}_f	\vec{v}_i	\vec{v}_f	ā	t
$\vec{v}_f = \vec{v}_i + \vec{a}\Delta t$	М	М				
$\vec{x}_f = \vec{x}_i + \vec{v}_i \Delta t + \frac{1}{2} \vec{a} t^2$				М		
$\vec{x}_f = \vec{x}_i + \frac{\vec{v}_i + \vec{v}_f}{2}t$					М	
$\vec{v}_f^2 - \vec{v}_i^2 = 2\vec{a}\Delta\vec{x}$						М

Understand these definitions:

$\vec{v} = \frac{\Delta \vec{x}}{\Delta t}$	$\vec{v}_{average} = \frac{\vec{v}_i + \vec{v}_f}{2}$	$\vec{v}_{average} \neq \frac{\vec{v}_i + \vec{v}_f}{2}$	
	only if constant acceleration	if different rates over equal intervals	
$\Delta t = t_f - t_i$	$\Delta \vec{x} = \vec{x}_f - \vec{x}_i$	$\Delta \vec{v} = \vec{v}_f - \vec{v}_i$	
$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$	$s_{average} = \frac{d_{total}}{t}$	$\vec{v}_{average} = \frac{\vec{D}}{t}$	

Meany means:

When finding averages rate (e.g., speed or velocities) when an object is in constant (non accelerating motion), use the Harmonic mean

$$H = \frac{n}{\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n}}$$

Understand these relationships:

- y = mx + b where $m = \Delta y / \Delta x = (y_2 y_1) / (x_2 x_1)$ and b equals the y-intercept
- The area under the "curve" of a position-time graph is meaningless.
- The area under the "curve" of a velocity-time graph is displacement.
- The area under the "curve" of an acceleration-time graph is velocity.

Distinguish scalars and vectors:

- Scalars are "magnitude" only such as distance and speed. $d = |\vec{D}|$
- Vectors are "magnitude and direction" such as displacement and velocity. $s = |\vec{v}|$